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a b s t r a c t

The Poisson’s ratio of two-dimensional hexagonal crystals has been widely studied due to its funda-
mental and fantastic nature. However, the issue involved in the regulation strategy and in the bounds of
Poisson’s ratio of two-dimensional hexagonal crystals has not been addressed. In this work, we predict
that the Poisson’s ratio of two-dimensional hexagonal crystals can be controlled by modifying the
structural interaction therein, where the lower bound and upper bound are −1/3 and +1, respectively.
Furthermore, molecular simulations verify these predictions. Finally, the underlying mechanism is
revealed as the interplay between two deformation modes (i.e., bond stretching and angle changing).
This work provides an universal regulation strategy to tune the Poisson’s ratio of two-dimensional
hexagonal crystals, and determines fundamental limits on the Poisson’s ratio of two-dimensional
hexagonal crystals.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Poisson’s ratio, as one of the most fundamental parameters
to measure the deformation of materials, has attracted consid-
erable interests [1,2]. Poisson’s ratio not only affects the elastic
behaviors of materials, but also closely relates to the material
properties beyond elasticity, such as vibration absorption [3],
indentation resistance [4], and toughness [5]. Therefore, a large
number of strategies including modifying the internal factors,
such as the geometry, topology, or anisotropy, and applying ex-
ternal fields, such as temperature, pressure, or electric field, that
could control the sign and magnitude of Poisson’s ratio have been
proposed [1,2,6]. The limits on the Poisson’s ratio of conven-
tional three-dimensional (3D) isotropic materials are well known
as −1 < ν < 1/2 that results from the requirement of elastic
stability. As the compressibility increases, the Poisson’s ratio of
3D isotropic materials decreases from 1/2 to −1. To be specific,
for highly incompressible rubber, ν ≈ 0.5; for slightly compress-
ible metals, polymers and ceramics, 0.25 < ν < 0.35; for more
compressible network structures, ν can be negative; for highly
compressible fluids, ν can even approach −1 [1]. In addition to
isotropic materials, Ting et al. predicted that the Poisson’s ratio
for anisotropic materials has no bounds [7]. These studies on the
regulation strategies and the bounds of the Poisson’s ratio are of
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fundamental importance for guiding the design, fabrication, and
applications of 3D materials having diverse Poisson’s ratios.

Recently two-dimensional (2D) materials have received much
attention because of their extraordinary properties resulting from
the reduced dimensions [8–14]. Most of 2D materials possess
hexagonal lattice [15] and thus are named as two-dimensional
hexagonal crystals (2DHCs), in which the well-known examples
are graphene and hexagonal boron nitride (h-BN). The in-plane
elastic behavior of 2DHCs is known as elastic isotropy resulting
from their six-fold rotational symmetry [16]. Thus it calls for
only two independent elastic constants to measure the elastic
deformation, in which the Poisson’s ratio is a commonly used one.
Many studies have been conducted to investigate the Poisson’s
ratios of 2DHCs, and thus diverse Poisson’s behaviors have been
observed in 2D materials by tailoring their structures, such as
introducing ripples, hydrogenation, or free edges [17–21]. Grima
et al. demonstrated that graphene can be modified to exhibit a
negative Poisson’s ratio by introducing defects, which was ex-
plained by a ‘crumpled paper’ model [17]. Subsequently, it was
further shown that graphene can exhibit a large magnitude of
negative Poisson’s ratio by distributing defects in a specific ar-
rangement [19]. Wan et al. found that the Poisson’s ratio of
monolayer graphene oxide can be controlled from positive to neg-
ative values by modifying its oxidation degree [21]. Furthermore,
Jiang et al. found that graphene can exhibit negative Poisson’s ra-
tio in a certain stage of the strain–stress curve resulting from the
interplay of atom interactions [22]. The Poisson’s ratios, especially
negative Poisson’s ratios of 2DHCs have been widely studied,
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while an universal regulation strategy as well as fundamental
bounds of the Poisson’s ratio of 2DHCs has not been determined.

In this work, we predict that the Poisson’s ratio of 2DHCs can
decrease from +1 to −1/3 by increasing the ratio between angle
stiffness and bond stiffness of 2DHCs. Subsequently, molecular
simulations are performed to verify this prediction. Finally, two
deformation modes are proposed to understand the Poisson’s
behaviors of 2DHCs.

2. Method

We performmolecular simulations by using large-scale atomic/
molecular massively parallel simulator (LAMMPS) [23]. The strain
energy in 2DHCs consists of Vb (due to bond stretching (d − d0))
and Va (due to angle change (θ − θ0)), where Vb = kb (d-d0)2
and Va = kθ (θ − θ0)2, respectively. Here d0, θ0, kb and kθ are
the equilibrium bond length, equilibrium angle, bond stiffness
and angle stiffness, respectively. It is worth mentioning here
that the out-of-plane deformation also plays an essential role in
the mechanical properties of 2DHCs. However, the out-of-plane
elasticity is characterized by an independent elastic constant,
i.e., angle stiffness of 2DHCs, which only correlates to the stiffness
of dihedral angle in the bead–spring model [24]. Hence, the out-
of-plane deformation is independent from the in-plane bond
stretching, angle changing and Poisson’s ratio. Considering these
facts, out-of-plane deformation is not considered in investigating
the in-plane Poisson’s behaviors of the 2DHCs. Without loss gen-
erality, unitless simulations are performed and the fundamental
quantities of length and energy are set as σ and ε, respectively.
Herein d0 and kb are adopted as 1σ and 1ε/σ 2, respectively. To
explore the effect of λ =

kθ
kbd20

that characterizes the ratio of
mechanical resistance between angle and bond deformation on
the mechanical behavior of 2DHC, kθ is adopted as λε, where
λ is modified in simulations. Furthermore, a 2×2×1 supercell
of 2DHCs is modeled (Fig. 1a). To avoid the size effect of the
model, periodic boundary conditions are applied in the in-plane
directions. Before the tensile deformation is applied, the sheet
of 2DHC is energetically minimized by using conjugate gradient
algorithm. To investigate the mechanical behaviors of 2DHCs with
different λ, we perform tensile and shear tests on 2DHCs. To
be specific, in the tensile test, tensile strain with increment of
0.5% per step until 5% along x (y) direction is applied, while the
freedom of the structure in y (x) direction is relaxed to minimize
the system energy. In the shear test, shear strain with increment
of 0.5% per step until 5% along x (y) direction is realized by tilting
the box.

3. Results and discussion

3.1. Theoretical prediction

For 2DHCs subjected to in-plane deformation, the material
deformation can be mapped into the change of bonds and angles.
By using this method, Gillis et al. related the material elastic
properties to the bond and angle interaction of 2DHCs [25], which
was used to describe the elastic responses of graphene [26] and
other 2DHCs [24]. As illustrated in Fig. 1a, the equilibrium bond
length and angle are defined as d0 and θ0, respectively, and the
bond stiffness kb and angle stiffness kθ determine the resistance
of bond stretching and angle changing, respectively. When a
tensile force is applied on the periodic unit of 2DHCs (Fig. 1b),
the lateral strain of εx and applied strain of εy can be related to
the deformation of bonds and angles in 2DHCs. To be specific, by
applying a force f along the bond between two atoms, the bond
length change is d − d0, which is described as

f = kb(d − d0) (1)

Similarly, as a torque T is applied between a pair of connected
bonds, the induced change of angle is θ-θ0. The relation between
them can be written as

T = kθ (θ − θ0) (2)

where θ0 equals 120◦ in 2DHCs. Considering a tensile force is
applied on the periodic unit of 2DHCs as shown in Fig. 1b, the
deformation can be mapped into the change of three bonds and
three angles. The force acting on the bonds of B1 (B2) can be
decomposed into two components along and perpendicular to
the bond as f1 = F sin 30◦ and f2 = F cos 30◦, respectively.
Thus, the bonds of B1, B2 and B3 yield the displacement of f1/kb,
f1/kb, and 2F/kb along bond stretching direction, respectively.
The displacement of B2 (∆d1 = f1/kb) induced by f1 can be
decomposed into two components along the x and y directions as
∆d1 cos 30◦ and ∆d1 sin 30◦, respectively. Meanwhile, bonds of B1
and B2 also yield angle deformation resulting from f2. Considering
the cooperative effect in the deformation of angle, the angle
change ( ̸ AOD) can be calculated as

∆θ = f2d0/3kθ (3)

Thus the displacement of B2 induced by f2 is

∆d2 = d0∆θ/2 (4)

which can be decomposed into two components along x and y
directions as −∆d2 sin 30◦ and ∆d2 cos 30◦, respectively. Hence,
the displacements along the x and y directions are calculated as
the sum of the corresponding components of the bond stretching
and angle changing as

∆x = 2(∆d1 cos 30◦
− ∆d2 sin 30◦) (5)

∆y=∆d1 sin 30◦
+ ∆d2 cos 30◦

+ 2F/kb (6)

The corresponding strains εx = ∆x/(
√
3d0) and εy = ∆y/(3d0/2)

are

εx = (F/12d0)(6/kb − d20/kθ ) (7)

εy = (F/12d0)(18/kb + d20/kθ ) (8)

Combining Eqs. (7)–(8), the Poisson’s ratio of 2DHCs can be
derived as

υ =
(1–6λ)

18λ + 1
(9)

where we define a dimensionless factor λ =
kθ

kbd20
, which charac-

terizes the ratio of mechanical resistance between angle and bond
deformation. Similarly, this formula can be also derived when the
tensile force is applied in x direction (See Supplemental Material
for details). The bond and angle stiffness should be positive (λ >
0) from the requirement of elastic stability of 2DHCs. Thus the
range of ν can be derived as

−1/3<ν<1 (10)

It can be found that ν increases from −1/3 to +1 with the
decreasing of λ. As an evidence, Chang et al. [27] have proposed
an analytical model to relate the elastic properties of a single-
walled carbon nanotube to its atomic structure, and the bound
of [−1/3, 1] can be also concluded from the theoretical formula.
In addition, the in-plane Poisson’s ratio (ν), Young’s modulus (E)
and shear modulus (G) of 2DHCs should meet

E = 2G(1 + ν) (11)

which results from their in-plane elastic isotropy due to the
6-fold rotational symmetry [16].
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Fig. 1. (a) Illustration of the bead–spring model of 2DHCs. (b) Periodic unit of 2DHCs as stretched along armchair direction. The applied force F is decomposed
into two components (f1 and f2) along and perpendicular to the bond stretching direction, respectively. The displacement ∆d1 (∆d2) induced by f1 (f2) is further
decomposed into two components along the x and y directions, respectively.

Fig. 2. (a) Tensile stress (σT) and lateral strain (εL) as the function of tensile strain (εT) when uniaxially stretching the periodic unit of 2DHCs along armchair
direction. (b) Shear stress (σS) as the function of shear strain (εS) when shearing the periodic unit of 2DHCs along armchair direction.

It is worth mentioning that the dimensionless factors (λ) of
real 2DHCs can be derived from their Poisson’s ratios by us-
ing the present theoretical formula (Eq. (9)). For example, λ of
graphene (0.098), h-BN (0.081) and MoS2 (0.061) are calculated
from the Poisson’s ratios of graphene (0.15), h-BN (0.21) and MoS2
(0.30) [9]. It can be concluded from Eqs. (9) and (11) that the
ratio between the resistance against angle changing (shear defor-
mation) and that against bond stretching (tensile deformation) of
graphene is larger than that of h-BN as well as MoS2.

3.2. Molecular simulation

To verify the elastic properties of 2DHCs predicted from the-
ory, we perform tensile and shear tests by using molecular sim-
ulations. In these simulations, λ is controlled by modifying the
value of angle stiffness (kθ ) while keeping bond stiffness (kb)
constant (See method for details). It should be noted that to avoid
defining the controversial thickness of 2D crystals, the 2D stress
is used by rescaling the stress with respect to vacuum padding in
simulations without loss of generality. The 2D tensile stress (σT)
and lateral strain (εL) as the function of tensile strain (εT) in the
tensile test, and the 2D shear stress (σS) as the function of shear
strain (εS) in the shear test are recorded, respectively. As 2DHCs
tested along armchair direction, both the slopes of strain-stress
curves (εT-σT and εS-σS) in the tensile and shear tests increase
with the increasing of angle stiffness, signifying the increasing of

Young’s and shear moduli of 2DHCs, respectively, while the slope
of εL-εT in the tensile test decreases with the increasing of angle
stiffness, indicating the decreasing of Poisson’s ratio of 2DHCs
(Fig. 2a–b). These behaviors are also observed in 2DHCs that are
tested along zigzag direction (Fig. 3a–b). Furthermore, we extract
the Young’s modulus, Poisson’s ratio and shear modulus from
these tensile and shear tests. The simulated relation between
them agrees with Eq. (11), consistent with the in-plane elastic
isotropy of 2DHCs (Fig. 4).

Furthermore, to verify the regulation strategy as well as the
limits on Poisson’s ratios for 2DHCs predicated by Eqs. (9)–
(10), we calculated ν of 2DHCs having different λ as uniaxially
stretched along armchair and zigzag directions. The molecular
simulation results demonstrate that with the decrease of the ratio
between angle stiffness and bond stiffness, the Poisson’s ratios
can be tuned from negative to positive values. Additionally, the
calculated Poisson’s ratios lie between −0.34 and +1.00, which
agrees with the prediction of the bounds of −1/3 and +1 for
the Poisson’s ratio of 2DHCs (Fig. 5a). It demonstrates that λ

can be regarded as an univeraial factor to control the sign and
magnitude of the Poisson’s ratio for 2DHCs under fundamental
limits. Considering that λ intrinsically results from the charge
density distribution of 2DHCs, the strategies of exciting intrinsic
electrons, injecting extrinsic charges, and applying external fields
that could modulate the charge density distribution are suggested
to manipulate λ in experiments.
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Fig. 3. (a) Tensile stress (σT) and lateral strain (εL) as the function of tensile strain (εT) when uniaxially stretching the periodic unit of 2DHCs along zigzag direction.
(b) Shear stress (σS) as the function of shear strain (εS) when shearing the periodic unit of 2DHCs along zigzag direction.

Fig. 4. Relation between Poisson’s ratio (ν) and the ratio between Young’s
modulus and shear modulus (E/G) of 2DHCs as compared between molecular
simulation and theoretical prediction (Eq. (11)).

Finally, the underlying mechanism of the abovementioned
Poisson’s behaviors is revealed from the structural analysis of
2DHCs. Without loss of generality, we take a periodic unit of
2DHCs uniaxially stretched along the armchair direction as an
example. As illustrated in Fig. 5b, there are two deformation
modes of bond stretching and angle changing, as well as their
interacton, which has been used for the understanding of the
Poisson’s behaviors of graphene [22]. On the one hand, as λ is
towards infinity, the bond stretching would dominate the defor-
mation of 2DHCs. Thus all bonds are stretched while the angles
almost remain constant in this deformation mode, resulting the
lower bound of Poisson’s ratio for 2DHCs (−1/3). On the other
hand, as λ approaches 0, the angle change dominates the defor-
mation of 2DHCs. Thus the angles would deform while the bond
stretching can be neglected in this deformation mode, resulting
in the upper bound of Poisson’s ratio for 2DHCs (+1). Other Pois-
son’s behaviors of 2DHCs would fall between the two extremes,
which could be controlled by modifying the contribution from
two deformation modes in 2DHCs.

4. Conclusion and remarks

In summary, we predict that the Poisson’s ratio of 2DHCs can
be tuned from the lower bound (−1/3) to the upper bound (+1)
by modifying the bond and angle stiffnesses in their structures.

Fig. 5. (a) Relationship between the Poisson’s ratio (ν) and the dimensionless factor (λ). The theoretical prediction is from Eq. (9), and the square and circle points
are from uniaxial tensile tests along armchair and zigzag directions, respectively. (b) Illustration of two deformation modes of 2DHCs having different λ when applied
tensile force: (1) bond-stretching-dominated mode, where angles almost remain constant so the bond stretching dominates the deformation, signifying lower bound
of Poisson’s ratio (−1/3); (2) angle-changing-dominated mode, where bond lengths almost keep unchanged so angle changing dominates the deformation, signifying
upper bound of Poisson’s ratio (+1). The gray and black structures represent the initial and deformed configurations, respectively.
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Subsequently, the predicted bounds as well as the regulation
strategy of Poisson’s ratio of 2DHCs are consitent with the molec-
ular simulations. Our findings provide a guidance to design and
fabricate 2DHCs exhibiting different Poisson’s ratios for diverse
applications.

Finally, it is remarked here that the bead–spring model can
be generalized into modeling of nonplanar 2DHCs. For exam-
ple, nonplanar silicene and MoS2 have been coarse-grained as
the bead–spring models by conforming their mechanical proper-
ties [24]. Hence, the Poisson’s behaviors of nonplanar 2DHCs are
expected to be captured by the presented theory if they can be
coarse-grained as the bead–spring model of 2DHCs. However, it
is noted that the topology, geometry as well as the interaction
defined in this work is just an ideal model of 2DHCs that have
complex electron charge density distribution in reality. Consid-
ering these facts, the Poisson’s behavior of 2DHCs maybe much
more diverse in reality. To uncover new Poisson’s behavior of
2DHCs beyond this work, data-mining of the Poisson’s ratio of
2DHCs based on first principles calculations will be one of the
promising ways, and can be explored in the future work.
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Theoretical derivation based on the force applied in the zigzag direction. 

When the tensile load is applied in x direction (Fig. S1), the force acting on the bonds of 

B1 (B2) can be decomposed into two components along and perpendicular to the bond as f1 

= Fcos30o and f2 = Fsin30o, respectively. Thus, the bonds of B1 and B2 yield the 

displacement of f1/kb and f1/kb along bond stretching direction, respectively. The 

displacement of B2 (Δd1 = f1/kb) induced by f1 can be decomposed into two components 

along the x and y directions as Δd1cos30o and Δd1sin30o, respectively. Meanwhile, bonds 

of B1 and B2 also yield bending deformation resulting from f2. Considering the cooperative 

effect in the deformation of angle, the angle change (∠AOD) can be calculated as 

Δθ = f2d0/3kθ (S1) 

Thus the displacement of B2 induced by f2 is 

Δd2 = d0Δθ/2 (S2) 

which can be decomposed into two components along x and y directions as Δd2sin30o and 

-Δd2cos30o, respectively. Hence, the displacements along the x and y directions are 

calculated as the sum of the corresponding components of the bond stretching and angle 

bending as 

Δx = 2(Δd1cos30o + Δd2sin30o) (S3) 

Δy = Δd1sin30o − Δd2cos30o (S4) 

The corresponding strains 𝜀𝑥 = Δ𝑥/(√3𝑑0) and 𝜀𝑦 = Δ𝑦/(3𝑑0/2) are 

𝜀𝑥 = (𝐹/12√3𝑑0)(18/𝑘b +  𝑑0
2/𝑘θ) (S5) 

𝜀𝑦 = (𝐹/12√3𝑑0)(18/𝑘b − 𝑑0
2/𝑘θ)  (S6) 

Combining Eqs. S5-S6, the Poisson’s ratio of 2DHCs can be derived as 

 𝜐 =
(1 – 6𝜆)

18𝜆+1
                               (S7) 

where 𝜆 =
𝑘θ

𝑘b𝑑0
2 characterizes the ratio of mechanical resistance between angle and bond 

deformation.’ 
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Fig. S1 Periodic unit of 2DHCs as stretched along zigzag direction. The applied force F is decomposed 

into two components (f1 and f2) along and perpendicular to the bond stretching direction, respectively. 

The displacement Δd1 (Δd2) induced by f1 (f2) is further decomposed into two components along the x 

and y directions, respectively. 
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